Lanjutan artikel apa itu bilangan bundar , artikel yang kemudian masih hingga operasi hitung bilangan bundar terkena sifat komutatif dan asosiatif penjumlahan bilangan bulat.
Identitas penjumlahan.
untuk sembarang bilangan bundar berlaku a + 0 = a, artinya berapapun nilai bilangan bundar apabila dijumlahkan dengan 0 maka kesudahannya bilangan itu sendiri.
Sifat Pengurangan Bilangan Bulat
Lawan ( invers penjumlahan ) dari a ialah -a . penjumlahan sembarang bilangan bundar dengan lawannya selalu menghasilkan nol. Jadi, untuk sembarang bilangan bundar berlaku a - b = (a + b)
referensi : 12 + (-12) = -12+12=0
Sifat tertutup pada perkalian
Untuk sembarang bilangan bundar a dan b, apabila dikalikan maka kesudahannya niscaya bilangan bulat.
referensi : 12 x 20 = 240
12 bilangan bulat
20 bilangan bulat
240 juga bilangan bulat
sifat komutatif perkalian
a x b = b x a
sifat asosiatif pertolongan
( a x b ) x c = a x ( b x c )
Identitas perkalian
Jika sebelumnya sudah dijelaskan bahwa identitas penjumlahan ialah 0 (nol), sedang identitas perkalian ialah 1 ( satu )
a x 1 = 1 x a = a
berapapun bilangan apabila dikalikan dengan angka 1 ( satu ) maka kesudahannya ialah bilangan itu sendiri.
perkalian dengan 0 (nol)
0 x a = a x 0 = 0
berapapun bilangannya apabila dikalikan dengan 0 maka kesudahannya nol.
Sifat distributif
Pada sifat distributif perkalian dan penjumlahan berlaku :
a x (b + c ) = a x b + a x c
sifat distributif pengurangan
a x (b - c ) = a x b - a x c
Sifat kontribusi bilangan bulat
hasil dari kontribusi 2 bilangan bundar dapt ditentukan menurut tanda bilangan dengan cara diberikut :
(+) : (+) = (+) , bilangan postif dibagi dengan bilangan kasatmata kesudahannya positif
(+) : (-) = (-), bilangan postif dibagi dengan bilangan negatif kesudahannya negatif
(-) : (+) = (-), bilangan negatif dibagi dengan bilangan kasatmata kesudahannya negatif
(-) : (-) = (+), bilangan negatif dibagi dengan bilangan negatif kesudahannya positif
operasi hitung kontribusi bilangan bundar tidak bersifat komutatif maupun asosiatif.
Selesai sudah klarifikasi terkena bahan bilangan bulat, baik terkena garis bilangan maupun operasi hitung bilangan bulat. biar sanggup di pahami dan sanggup bermanfaa.
Selamat belajar
+Matematika academy
Identitas penjumlahan.
untuk sembarang bilangan bundar berlaku a + 0 = a, artinya berapapun nilai bilangan bundar apabila dijumlahkan dengan 0 maka kesudahannya bilangan itu sendiri.
Sifat Pengurangan Bilangan Bulat
Lawan ( invers penjumlahan ) dari a ialah -a . penjumlahan sembarang bilangan bundar dengan lawannya selalu menghasilkan nol. Jadi, untuk sembarang bilangan bundar berlaku a - b = (a + b)
referensi : 12 + (-12) = -12+12=0
Sifat tertutup pada perkalian
Untuk sembarang bilangan bundar a dan b, apabila dikalikan maka kesudahannya niscaya bilangan bulat.
referensi : 12 x 20 = 240
12 bilangan bulat
20 bilangan bulat
240 juga bilangan bulat
sifat komutatif perkalian
a x b = b x a
sifat asosiatif pertolongan
( a x b ) x c = a x ( b x c )
Identitas perkalian
Jika sebelumnya sudah dijelaskan bahwa identitas penjumlahan ialah 0 (nol), sedang identitas perkalian ialah 1 ( satu )
a x 1 = 1 x a = a
berapapun bilangan apabila dikalikan dengan angka 1 ( satu ) maka kesudahannya ialah bilangan itu sendiri.
perkalian dengan 0 (nol)
0 x a = a x 0 = 0
berapapun bilangannya apabila dikalikan dengan 0 maka kesudahannya nol.
Sifat distributif
Pada sifat distributif perkalian dan penjumlahan berlaku :
a x (b + c ) = a x b + a x c
sifat distributif pengurangan
a x (b - c ) = a x b - a x c
Sifat kontribusi bilangan bulat
hasil dari kontribusi 2 bilangan bundar dapt ditentukan menurut tanda bilangan dengan cara diberikut :
(+) : (+) = (+) , bilangan postif dibagi dengan bilangan kasatmata kesudahannya positif
(+) : (-) = (-), bilangan postif dibagi dengan bilangan negatif kesudahannya negatif
(-) : (+) = (-), bilangan negatif dibagi dengan bilangan kasatmata kesudahannya negatif
(-) : (-) = (+), bilangan negatif dibagi dengan bilangan negatif kesudahannya positif
operasi hitung kontribusi bilangan bundar tidak bersifat komutatif maupun asosiatif.
Selesai sudah klarifikasi terkena bahan bilangan bulat, baik terkena garis bilangan maupun operasi hitung bilangan bulat. biar sanggup di pahami dan sanggup bermanfaa.
Selamat belajar
+Matematika academy